Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures.

نویسندگان

  • Oliver Kann
  • Richard Kovács
  • Uwe Heinemann
چکیده

Metabotropic receptors modulate numerous cellular processes by intracellular Ca2+ signaling, but less is known about their role in regulating mitochondrial metabolic function within the CNS. In this study, we demonstrate in area CA3 of rat organotypic hippocampal slice cultures that glutamatergic, serotonergic, and muscarinic metabotropic receptor ligands, namely trans-azetidine-2,4-dicarboxylic acid, alpha-methyl-5-hydroxytryptamine, and carbachol, transiently increase mitochondrial Ca2+ concentration ([Ca2+]m) as recorded by changes in Rhod-2 fluorescence, stimulate mitochondrial oxidative metabolism as revealed by elevations in NAD(P)H fluorescence, and induce K+ outward currents as monitored by rapid increases in extracellular K+ concentration ([K+]o). Carbachol (1-1,000 microM) elevated NAD(P)H fluorescence by <or=14%DeltaF/F0 and increased [K+]o by <or=4.3 mM in a dose-dependent manner. Carbachol-induced responses persisted in Ca2+-free solution and blockade of ionotropic glutamatergic and nicotinic receptors. Under similar conditions caffeine, known to cause Ca2+-induced Ca2+ release (CICR), also evoked elevations in [Ca2+]m, NAD(P)H fluorescence and [K+]o that, in contrast to carbachol-induced responses, displayed oscillations. After depletion of intracellular Ca2+ stores by carbachol in Ca2+-free solution, re-application of 1.6 mM Ca2+-containing solution triggered marked elevations in [Ca2+]m, NAD(P)H fluorescence and [K+]o. These data indicate that metabotropic transmission effectively regulates mitochondrial oxidative metabolism via diverse receptor types in hippocampal cells and that inonitol 1,4,5-trisphosphate-induced Ca2+ release (IICR) or CICR or capacitative Ca2+ entry might suffice in stimulating oxidative metabolism by elevating [Ca2+]m. Thus activation of metabotropic receptors might significantly contribute to generation of ATP within neurons and glial cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabotropic Receptor-Mediated Ca Signaling Elevates Mitochondrial Ca and Stimulates Oxidative Metabolism in Hippocampal Slice Cultures

Kann, Oliver, Richard Kovács, and Uwe Heinemann. Metabotropic receptor-mediated Ca signaling elevates mitochondrial Ca and stimulates oxidative metabolism in hippocampal slice cultures. J Neurophysiol 90: 613–621, 2003. First published April 30, 2003; 10.1152/jn.00042.2003. Metabotropic receptors modulate numerous cellular processes by intracellular Ca signaling, but less is known about their r...

متن کامل

Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases.

BACKGROUND The volatile anesthetic isoflurane reduces acute and delayed neuron death in vitro models of brain ischemia, an action that the authors hypothesize is related to moderate increases in intracellular calcium concentration ([Ca2+]i). Specifically, the authors propose that during hypoxia, moderate increases in [Ca2+]i in the presence of isoflurane stimulates the Ca2+-dependent phosphoryl...

متن کامل

Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors.

Amyloid beta (Abeta) oligomers accumulate in brain tissue of Alzheimer disease patients and are related to pathogenesis. The precise mechanisms by which Abeta oligomers cause neurotoxicity remain unresolved. In this study, we investigated the role of ionotropic glutamate receptors on the intracellular Ca2+ overload caused by Abeta. Using rat cortical neurons in culture and entorhinal-hippocampa...

متن کامل

New type of synaptically mediated epileptiform activity independent of known glutamate and GABA receptors.

It is well known that excitatory synaptic transmission at the hippocampal CA3-CA1 synapse depends on the binding of released glutamate to ionotropic receptors. Here we report that during long-term application of Cs+ (5 mM), stimulation of the Schaffer collateral-commisural pathway evokes an epileptic field potential (Cs-FP) in area CA1 of the rat hippocampal slice, which is resistant to antagon...

متن کامل

Spiral intercellular calcium waves in hippocampal slice cultures.

Complex patterns of intercellular calcium signaling occur in the CA1 and CA2 regions of hippocampal slice organotypic cultures from neonatal mice. Spontaneous localized intercellular Ca2+ waves involving 5-15 cells propagate concentrically from multiple foci in the stratum oriens and s. radiatum. In these same regions, extensive Ca2+ waves involving hundreds of cells propagate as curvilinear an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 2  شماره 

صفحات  -

تاریخ انتشار 2003